Những câu hỏi liên quan
Diệp Nguyễn Thị Huyền
Xem chi tiết
Edogawa Conan
12 tháng 6 2021 lúc 9:18

Ta có: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)

\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2-2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(c-a\right)\left(a-b\right)}\right)\)

\(=\left(\frac{1}{\left(a-b\right)}+\frac{1}{\left(b-c\right)}+\frac{1}{c-a}\right)^2-2\left(\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)

\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)

=> \(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\sqrt{\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2}\)

\(=\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)

Vì a,b,c là các số hữu tỉ => \(\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)là một số hữu tỉ

=> A là một số hữu tỉ

Bình luận (0)
 Khách vãng lai đã xóa
Ayakashi
Xem chi tiết
Vũ Tri Hải
17 tháng 6 2017 lúc 22:43

ta có \(\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2=\)\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}+2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(c-a\right)\left(a-b\right)}\right)\)

= \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)= A2

vậy A = \(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)là một số hữu tỉ

Bình luận (0)
Incursion_03
Xem chi tiết
zZz Cool Kid_new zZz
15 tháng 9 2019 lúc 21:09

Thấy bài này chưa ai lm đúng nên cho e ké ạ:((

Đặt \(a-b=c;b-c=y;c-a=z\) khi đó \(x+y+z=0\)

Ta có:\(A=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}\)

\(\Rightarrow A^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}\)

\(\Rightarrow A^2=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\Rightarrow A=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) là số hữu tỉ.

Bình luận (0)
Đinh Đức Hùng
23 tháng 5 2018 lúc 7:29

Đặt \(a-b=x;b-c=y\Rightarrow c-a=x-y\)

\(\Rightarrow\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}}\)

\(=\sqrt{\frac{y^2\left(x+y\right)^2+x^2\left(x+y\right)^2+x^2y^2}{x^2y^2\left(x+y\right)^2}}=\sqrt{\frac{x^4+y^4+2xy^3+2x^3y+3x^2y^2}{x^2y^2\left(x+y\right)^2}}\)

\(=\sqrt{\frac{\left(x^2+y^2+xy\right)^2}{x^2y^2\left(x+y\right)^2}}=\left|\frac{x^2+y^2+xy}{xy\left(x+y\right)}\right|\) là một số hữu tỉ (ĐPCM)

Bình luận (0)
Incursion_03
23 tháng 5 2018 lúc 21:36

thx bạn!

Bình luận (0)
Takahashi Ayako
Xem chi tiết
Nguyễn Linh Chi
23 tháng 9 2019 lúc 14:36

Câu hỏi của Phạm Quang Dương - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
Ending of Story
Xem chi tiết
Phan Nghĩa
13 tháng 7 2021 lúc 14:26

do bài này quá nhiều người đã đăng rồi nên mình sẽ gửi link qua phần tin nhắn cho bạn nhé 

Bình luận (0)
 Khách vãng lai đã xóa
Ga
13 tháng 7 2021 lúc 14:29

Bạn có nhìn thấy hình không ạ ?

Mình lấy bài tại link : https://olm.vn/hoi-dap/detail/82024444022.html

Có gì bạn vào đó tham khảo nhé !

httpschat.lazi.vnuploadimages202107file_bjn1626161258.PNG

_ Hok tốt _

Bình luận (0)
 Khách vãng lai đã xóa
Niê H Nhiên
Xem chi tiết
Witch Rose
23 tháng 6 2019 lúc 8:34

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\left(\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2}{bc}}=\sqrt{\frac{1}{a^2}+\left(\frac{b+c}{bc}\right)^2-\frac{2}{bc}.}\)

\(=\sqrt{\frac{1}{a^2}+\frac{a^2}{b^2c^2}-\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}-\frac{a}{bc}\right)^2}\)\(=\left|\frac{1}{a}-\frac{a}{bc}\right|\)

Do a,b,c là các số hữu tỉ => đpcm

Bình luận (0)
Vanlacongchua
23 tháng 6 2019 lúc 14:13

Ta có 

\(\frac{1}{a^2\:}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b\:}-\frac{1}{c}\right)^2\)2.    + \(2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)\(2.\frac{c+b-a}{abc}\)\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(Vì a=b+c)

Từ đó suy ra 

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\)\(=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)Vì a,b,c là số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)là một số hữu tỉ

=> đpcm

Bình luận (0)
Crackinh
Xem chi tiết
Hải Anh
11 tháng 8 2018 lúc 15:54

Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2.\frac{c+b-a}{abc}\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)    (vì: a=b+c)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)

Do a,b,c là các số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\) là 1 số hữu tỉ

=.= hok tốt!!

Bình luận (0)
Quyết Tâm Chiến Thắng
Xem chi tiết
alibaba nguyễn
30 tháng 8 2019 lúc 10:00

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

Bình luận (0)
alibaba nguyễn
30 tháng 8 2019 lúc 9:46

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

Bình luận (0)
alibaba nguyễn
30 tháng 8 2019 lúc 9:50

2/ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)

\(\Leftrightarrow ab+bc+ca=1\)

Ta có:

\(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)

\(=\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)\)

\(=\left(a+b\right)\left(a+c\right)\left(b+a\right)\left(b+c\right)\left(c+a\right)\left(c+b\right)\)

\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

Bình luận (0)
Sao Vậy Trời
Xem chi tiết
alibaba nguyễn
26 tháng 7 2017 lúc 14:41

a/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)

\(=\sqrt{\frac{\left(b+c\right)^2.b^2+\left(b+c\right)^2.c^2+b^2.c^2}{\left(b+c\right)^2.b^2.c^2}}\)

\(=\sqrt{\frac{\left(b^2+bc+c^2\right)^2}{\left(b+c\right)^2.b^2.c^2}}\)

\(=\left|\dfrac{b^2+bc+c^2}{\left(b+c\right).b.c}\right|\)

Vậy \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là số hữu tỉ

Bình luận (0)
alibaba nguyễn
26 tháng 7 2017 lúc 14:47

b/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\sqrt{\frac{1}{\left(b+c\right)^2}+\frac{1}{b^2}+\frac{1}{\left(2b+c\right)^2}}\)

\(=\sqrt{\frac{\left(b+c\right)^2.b^2+\left(b+c\right)^2.\left(2b+c\right)^2+\left(2b+c\right)^2.b^2}{\left(b+c\right)^2.\left(2b+c\right)^2.b^2}}\)

\(=\sqrt{\frac{\left(3b^2+3bc+c^2\right)^2}{\left(b+c\right)^2.\left(2b+c\right)^2.b^2}}\)

\(=\left|\dfrac{3b^2+3bc+c^2}{\left(b+c\right).\left(2b+c\right).b}\right|\)

Vậy \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\) là số hữu tỉ

Bình luận (0)